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A mechanism for the fluctuating features associated with the general phenomenon known as
chaos-assisted tunneling is presented. These features are shown to be the result of a gradual compe-
tition between classically allowed (mixing) and classically forbidden (tunneling) dynamical processes.
A random-matrix description of the phenomenon is provided. This requires, apart from the sta-
tistical ensembles commonly used to represent mixing, logarithmic-random ensembles to describe
tunneling. Appearance and disappearance of tunneling partners and suppression of tunneling are
predicted as possible features of chaos-assisted tunneling regions.

PACS number(s): 05.45.+b, 03.65.—w, 73.40.Gk

I. INTRODUCTION

The study of the effects produced by external pertur-
bations on the dynamics of classically forbidden processes
such as tunneling has become an active field of research.
Most of the work has been done on bistable systems
driven by time-dependent fields. The field conditions
may be such that while negligible effects are observed on
the system classical phase space, remarkable changes are
produced in the tunneling dynamics; examples are the
tunneling suppression phenomena under periodic forces
[1] and magnetic fields [2].

A different class includes the cases in which the exter-
nal perturbation changes considerably the system classi-
cal dynamics even to the point of producing widespread
chaos. Some symmetry-related islands of Kol’'mogorov-
Arnol’d-Moser tori may still survive, becoming the loci
of localized quantum states with tunneling splittings A
orders of magnitude larger than those of the unperturbed
system [3]. Several theoretical analyses relate this dras-
tic change in the tunneling behavior to the important
phase-space changes induced by the perturbation [3-6].
However, a clear and convincing mechanism that explains
how the chaotic incoherent barrier crossing dynamics of
the classically chaotic motion may affect so significantly
the coherent tunneling dynamics of localized wave pack-
ets is still lacking. Recent work on this phenomenon
shows a transition to chaos-assisted tunneling as the field
strength varies, which takes place sharply when the lo-
calized tunneling-state wave functions start to overlap
with the chaotic zones of the classical phase space [5].
The usual negative-slope linear dependence of logA vs
1/A disappears in this chaos-assisted tunneling region;
instead, random looking oscillations are found with an
average A practically independent of £ [6,7].

In this paper we present simple matrix model Hamil-
tonians that provide a clear quantum mechanism for the
fluctuating features observed in the chaos-assisted tun-
neling region. We demonstrate that these features are
the result of a gradual competition between classically al-
lowed (mixing) and classically forbidden (tunneling) dy-
namical processes.
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II. A PHYSICAL SIMPLE MODEL

We start out by deducing, from physical arguments,
a very simple model with the basic ingredients to dis-
play a fluctuating region in its tunneling behavior. Imag-
ine a one-dimensional symmetric bistable system (e.g., a
particle in a double-well potential), whose energy spec-
trum consists of tunneling pairs of different parity states.
Together with tunneling, a second ingredient is needed:
mixing. This is included by perturbing the system with
an external oscillatory field in resonance with doublet-
to-doublet transitions in a certain energy region. We can
write then the following general Hamiltonian,

H=> &bl b, — Ecos(wt) > M, bl b,

1,5,

where we use the notation |is) = b!a and (iq | = b;,. In-
dices 7 and j label the doublet and take increasing integer
values for increasing energies; o (or §) indicates the state
symmetry (parity), either + or —. The amplitude of the
driving field is denoted by E and its frequency by w. M
is the coupling matrix. If a symmetry is required in our
perturbed system, M should be restricted to couple ei-
ther equal parity (as in dipole interactions) or different
parity (as in polarizability interactions) states.

Suppose now that E is small enough to perform a res-
onance approximation in H. This has two steps: trunca-
tion of the system to include only the states driven into
resonance by the field, and time averaging over the re-
maining fast oscillations [8]. One finally arrives [8] at a
low-field resonance Hamiltonian H*** = H, + H; + H,,
with
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which is written in terms of “right” (r) and “left” (1) lo-
calized states |1,,.)=%(|2+) + |i-)), |zl):%(|z+) —i-)),
with energies &; = %(Ei+ +¢€;_)— (i — 1)w. The pa-
rameters A;, V;;, and W;; are renormalized splittings
and couplings, which for small enough E can be ap-
proximated [8] by the bare values A; = &;_ — g,
Vi =2V = (Miy o + Mi_ i) (8i 1 + 8i51), Wi =
:f:Wilj = (Mi+,ji - Mi_,jx)(ts—,‘,j.'.l + 51',_7'__1). The upper
and lower signs in these expressions correspond, respec-
tively, to equal-parity (EP) and different-parity (DP) M
coupling matrices. Both A; and W;; couple r to [ states
and induce classically forbidden tunneling processes; V;;
couples 7-r and l-I states inducing classically allowed mix-
ing processes. In general |V;;| > |W;;| ~ |A,~AJ~|%.

Let us perform further simplifications. First, since the
W;; couplings are multiplied by the small field strength
E in H*® we will neglect them against A;. Second,
the V;; factors couple only next-neighbor states and their
dependence on the state index ¢ and on £ in the resonance
region is expected from semiclassical arguments to be
weak; we will then choose V; = :I:VJJ = V/E. Finally,
since only the i, (¢;) states close in energy ¢; are mixed
by Vij, we will truncate the sums in H*** to include IV
r-l pairs and give them the same energy e; = 0. All these
simplifications lead, after changing the sign of the even
index ! states in the DP case, to the simple model

N-1
1
H™ = V'Y (bf,b(m)r + bl b, + H-C-)

=1
N

—% D (F1)fA, (b;',bi, + bz,bi,) ) (1)
=1

with two diagonal (r,!) blocks representing classically al-
lowed mixing and two off-diagonal blocks representing
quantum tunneling between r and ! subsystems. H.c.
stands for Hermitian conjugate. Eigenstates of H™°9 are
separated into (+) and (—) symmetry classes with re-
spect to the transformation that interchanges (r) and (I)
indices.

The different origin of the two coupling processes in-
volved in H™°9d suggests that the interplay between them
is going to be determined by £. Since A; are the tunneling
splittings for the unperturbed system, we will give them
the semiclassical form A; = A; e 5i/% whose more gen-
eral validity has been established [9]. The prefactors A;
are smooth functions of 4 and S; is the imaginary part of
a classical action integral for a complex path [6,9]. Take
now the energy region of the undriven system, which is
mixed by the driving field to become the resonance zone,
and call Sy, and Spax the minimum and maximum val-
ues of S in such a region. If our system has only one
degree of freedom and it is not too pathological, one ex-
pects S; to increase monotonically from Spin t0 Smax-
If this increase is linear and the prefactor A; is taken
equal and independent of %, then the tunneling split-
tings will be given by A; = Ae Smin/h g=a(i=1)  with
& = (Smax — Smin)/NE. The product N4 is proportional
to the phase-space volume of the resonance zone; thus «
is independent of A. Obviously, the number of states in
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the resonance zone N does depend on A. Including this
dependence in our model would complicate unnecessarily
our analysis; thus we will fix V for the moment, which
is equivalent to varying the field intensity in the form
EeSwin/h and scaling the results back to the initial value
E. As will be demonstrated below the results obtained
in this way are basically identical to those obtained with
a true A-dependent N.

III. RESULTS

Figure 1 presents, as a function of Spn/%, the tun-
neling splittings for our model with N = 10, a = 5,
In(A) = 25 and In(V) = —30. Figures 1(a) and 1(b)
correspond, respectively, to EP and DP coupling cases
[upper and lower signs, respectively, in Eq. (1)]. A flat
oscillatory transition region appears with many of the
features observed in the chaos-assisted tunneling region
of more complicated models [6,7]. The main difference
is that, unlike the random nature of the fluctuations ob-
served so far, the oscillations obtained here are quite reg-
ular. This is of course due to the simplicity of our model;
we will see below how this model may be generalized
to accommodate more realistic and complex situations.
But let us concentrate for the moment on these results
because this same simplicity will lead us to a transparent
physical mechanism for the observed features.

Let us compare first the two limit situations # — 0 and
h — oo. In the first case, the first term in Hamiltonian
(1), which induces mixed dynamics, is just a negligible
perturbation to the tunneling second term. Therefore,
the tunneling behavior in this limit is that of the unper-
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FIG. 1. Tunneling splittings (A), allowed maximum num-
ber of tunneling pairs (N¢), and pair detection reliability ()
for the Hamiltonian model in Eq. (1), as a function of Smin/#.
(a) and (b) correspond, respectively, to equal parity and dif-
ferent parity couplings. In both cases ( is calculated for the
lowest splitting pair at each point. See text for details.
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turbed system with the usual 1/4 negative-slope linear
dependence. On the contrary, when A — oo, mixing
dominates and tunneling becomes a perturbation. The r
and [ states mix independently to produce linear super-
position states in which every original state participates
with similar probability. Perturbation theory gives then
tunneling splittings that, due to our extreme mixing, get
much closer to each other and closer to the highest possi-
ble value Ay. The tunneling dependence on 1/# is again
the usual linear one. These two limits appear in the fig-
ures.

Let us follow now the behavior of the model from the
h — 0 to the &z — oo limits. For large enough A, A will
get close in magnitude to the mixing coupling V, while
the others A;xn will still remain much smaller than V;
this happens due to the A; logarithmic-uniform distribu-
tion. At this point, the two states coupled by Ay will
start to drop out the mixing process. As a consequence,
the tunneling doublet corresponding to this pair acquires
a splitting ~ Ay, and the other still mixed pairs have
their splittings reduced and bounded by the next highest
A; = An_1 . This is just the first oscillation. The ar-
gument can be repeated for each pair of states; thus the
number of oscillations will be N — 1, the period «, and
the average splitting in this region ~ V. The amplitude
of the oscillation is also a function of a with some small
differences among pairs; from the N = 2 case, which has
an analytic solution, this amplitude was estimated to be
~ a — ag; thus for a smaller than the critical value a.
the oscillation disappears, although a flat transition may
still survive. We have obtained a. ~ In4.

There is an important difference between the EP and
DP coupling cases, namely, while no level crossing oc-
curs between (+) and (—) states in the DP model, in the
EP model all the (+)-(—) pairs that remain mixed cross
once every oscillation practically at the same 1/% value.
The crossings occur between tunneling partners and the
minima in the oscillation of Fig. 1(a) correspond to these
crossings. At the crossing points (r) and (I) localized
states may be constructed for which tunneling is sup-
pressed; even more, since the level crossings take place
simultaneously for all mixed pairs, symmetry would be
totally broken within this mixed subspace.

Above we mentioned that a correct study of the model
as a function of & would involve an A-dependent N. We
can now demonstrate that, due to the gradual nature
of the transition, an A-dependent N is going to produce
practically the same results as a fixed N calculation if N
is properly chosen. Let us remember first that our tunnel-
ing splittings have the upper bound A, = Ae Smin/h;
thus, starting from the Z — 0 limit, the transition re-
gion will begin when A,y ~ V. From these relations
and our definition A; = Ae Smin/he=a(i=1) e can find
the number of pairs N = N,.x involved at this point in
the transition, i.e., Npax ~ %(1 — Smax/Smin) In(A4/V).
Therefore, if one chooses to fix Nyax, then A .. can be
determined; in Figs. 1(a) and 1(b) the Anax values for
our 10-pair case are represented by thick straight lines.
Now, a truly dependent A calculation would exclude at
each point those pairs with tunneling splittings above
these lines. However, the figures show clearly that these
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states have not been mixed yet and thus are not involved
at all in the transition region; in other words, taking
them out will not change anything except perhaps at the
higher 1/% end of the transition.

Mixing may involve states above the barrier, produc-
ing, in the classical limit, regions invariant against the
r-l symmetry transformation. The A; associated with
these states would be practically independent of A and of
the order of the mixing terms V; ;. This situation corre-
sponds to the particular case Sp,;; = 0, thus the number
of states involved in the transition would be infinite, as
expected, since barrier crossing persists in the classical
limit.

There is a final aspect of the model of enough rele-
vance to be discussed. It concerns the identification of
the tunneling partner states, which until now we have as-
sumed to be always possible. Tunneling partners should
have different symmetry; let |¢;) and |j_) be two nor-
malized different-symmetry eigenstates of Hamiltonian
(1); these two states are exact tunneling partners if
R;; =| (4] R ) |2 =1, where R is the operator that
changes the sign of all |;) states producing an opposite
parity state. With this definition, tunneling partners do,
of course, exist in our model in the two limits 2 — 0 and
h — oco. Elsewhere, only approximate tunneling pairs
can be defined. Any measure of how close to either 0
or 1 R;; matrix elements are could be used as a crite-
rion to establish the adequacy of a description in terms
of tunneling partners. Here, we have chosen to regard R
as a channel matrix in the information theoretical sense
[10]. The capacity C (in bits) of the channel is defined
as its maximum mutual information [10] and N¢g = 2¢
< N can be taken in our case as the maximum num-
ber of states in which one is allowed to look for their
tunneling partners. The maximum mutual information
is obtained for a given state-probability distribution p;
and (; = p;N¢ is a measure of the maximum reliability
(¢ < 1) of the process of detecting the tunneling part-
ner for the state | ¢y). All these quantities have been
introduced as measures of stability, reliability, and com-
plexity in quantum mechanics in Ref. [11]. Figures 1(a)
and 1(b) include the values of N¢ for our 10-pair sys-
tem and those of ¢; for the smallest splitting pair at each
point. From these values we conclude that a description
in terms of tunneling partners is inadequate around the
oscillation maxima, while such a description is optimum
at the oscillation minima. This would be consistent with
and explain the observations made in some specific model
Hamiltonians [6]. The fact that the crossings in our EP
coupling case occur at regions where tunneling partners
can be most easily identified gives definitive support to
the possibility of localization within this model.

IV. A RANDOM-MATRIX MODEL

So far, we have been able to explain with our model
all except one of the known features of chaos-assisted
tunneling. This remaining feature is the random nature
of the oscillation observed in some specific models with
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large phase-space regions of classical chaotic motion. Our
model describes the most simple situation of an isolated
resonance and the regularity of its mixing-tunneling tran-
sition is therefore not surprising. In more complicated
situations energies and couplings will not be equal, differ-
ent resonance zones may overlap, and other off-diagonal
elements of both mixing and tunneling nature will be
present. In such extreme mixing cases, where the classi-
cal motion is usually chaotic, the theory of random ma-
trices is able to capture many of the features known as
quantum chaos. Suppose we still use the structure of the
Hamiltonian with the two symmetry related (r) and (I)
subspaces.

N
Hmed — Z Vij (b;rrbj,‘ + b—}:bﬁ)
i,j=1

N
_%e"smin/ﬁ ; A;A; (b:'[,.bil + b;‘f,bir) . (2)

N =

The diagonal form of A couplings in this expression is not
a restriction since we can always arrive at such a form by
a unitary transformation.

The matrix V;; of A-independent, classically allowed
mixing processes is now taken from one of the random
ensembles [12]. The exponential nature of the tunnel-
ing couplings points to a logarithmic-random form for
A;; this has been confirmed numerically in model Hamil-
tonians with chaotic classical limit and also by statisti-
cal analysis based on the structure of the classical phase
space [6]. Thus we propose taking the values for A; from
a logarithmic-random ensemble, e.g., logarithmic expo-
nential; the prefactors A; may just be simply taken ran-
domly as +1.

Figure 2 presents results of this random model for
N = 10. The couplings V;; were taken from the Gaussian
orthogonal ensemble and A; from a logarithmic-Gaussian
ensemble. The features of the previous models remain
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FIG. 2. Same as Fig. 1, for the random model Hamiltonian
in Eq. (2). See text for details.
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except for the now irregular oscillations. As before, at
the oscillation maxima the tunneling doublet description
fails, and exact localization is also possible at the level
crossings of tunneling partners. Since there is not a con-
stant o now, the size and amplitude of each oscillation
change, although there is some correlation between them.
The resemblance between Fig. 2 and the results obtained
numerically for specific models [6,7] is rather good.

V. CONCLUSIONS

We have presented in this paper some simple matrix
model Hamiltonians that display a chaos-assisted tun-
neling transition as a parameter (%) is varied. The first
model has been deduced from physical arguments and
corresponds to two symmetry related resonance zones
coupled by exponentially small tunneling processes. Mix-
ing and tunneling have been separated into two different
terms in the Hamiltonian, where the role of % is to change
their relative importance. We have shown then that the
phenomenon known as chaos-assisted tunneling occurs
at the transition from a region where classically allowed
mixing processes smoothly dependent on % dominate, to a
region in which classically forbidden tunneling processes
take over. The logarithmic-uniform form of the tunnel-
ing couplings makes the transition occur gradually with
regular oscillations every time the magnitude of a tun-
neling coupling gets close to the magnitude of the mix-
ing coupling. Size and amplitude of these oscillations are
correlated and the average splitting in the transition re-
gion has the order of magnitude of the mixing couplings.
The maximum number of states involved in the transi-
tion and the number of oscillations are determined by the
magnitude of the mixing couplings and the value of the
maximum tunneling coupling allowed within the mixed
phase-space region.

This matrix model was later generalized by introduc-
ing disorder in an attempt to accommodate more com-
plex situations, such as those leading to the overlapping
resonance mechanism responsible for chaotic motion in
the classical limit. The proposed random-matrix model
uses members of the Gaussian ensembles for the mixing
term and members of logarithmic-random ensembles for
the tunneling term. The random nature of these terms
induces a random character in the fluctuating features of
the chaos-assisted tunneling transition, with behaviors
very reminiscent of those observed in specific systems.
Finally, we have also seen that tunneling partners are
not always defined and that tunneling suppression is a
possible phenomenon in mixing-assisted tunneling.

In conclusion, the relative magnitude of mixing and
tunneling terms, their distribution, and the number of
states determines completely the features associated with
the mixing-assisted tunneling transition displayed by our
matrix models. How accurately can one map these mod-
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els to specific systems? Recent calculations show that
this mapping can be indeed established rather accurately
at the qualitative level, providing good estimates of the
transition region, tunneling splittings, number and size of

the oscillations, and possibility of tunneling suppression
[13].
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